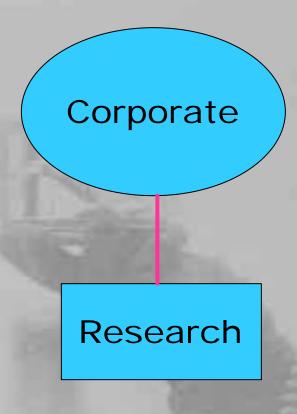
Optimizing Design by Understanding How Lab Environment, Type and Application Affect Energy Use

> Jeff Heiken Mark Maguire October 9, 2002


Many Tools Available for Energy Reduction

- † Application of Tools Influenced by:
 - † What Happens in Lab
 - † Who's Building the Lab
 - † Lab Environment
 - † Heat Gain
 - † Fume Hood Density
 - † Occupancy Profile
- † ASHRAE 90.1-1999

Who Builds Labs and Why? Universities **Public Sector** Corporate **Analytical** Teaching Research

- † Time-to-Market
- † High-Throughput Studies
- * Construction Cost v.
- * Revenue for New Products
- * High-Velocity Project Delivery

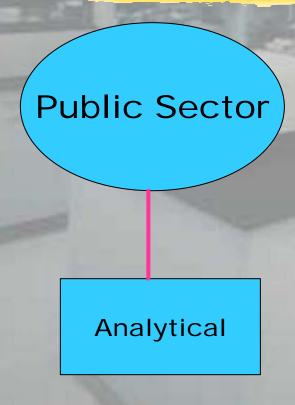
Design Parameters: Corporate Research

Corporate
Research

- * Airflow: 1.6 2.0 cfm/ft²
- † Chilled Water: 95-110 ft²/ton
- * Energy Reduction:
 - Operating Cost Concern
 - * Construction Budget Constraint

Energy Reduction Opportunities: Corporate Research

- Heat Recovery
 - Central Utility Project Deferral
 - Site Emissions Constraint
- † Variable Volume Airflow Diversity
 - † Peak Fume Hood Usage:
 - † Historical Data:
 - 50% of ultimate is common
 - no "morning spike"
 - high rate of compliance


Energy Reduction Opportunities: Corporate Research

- † Track Diversity:
 - Variable Speed Fans
 - * Floating Duct Pressure Setpoint
- † Equipment Rooms
 - 40 50 W/ft² Heat Gain
 - Offset Heat Gain with Chilled Water
 - * Less 100% Outside Air Usage

Who Builds Labs and Why? Universities **Public Sector** Corporate Teaching **Analytical** Research

- † Longer Project Delivery
- Low Flexibility
 - Minimal Program Shifts
- † Forensics Labs
 - Contamination of Product
 - More Fan Energy
 - + HEPA Filtration

Design Parameters: Public Sector Analytical Labs

Public Sector

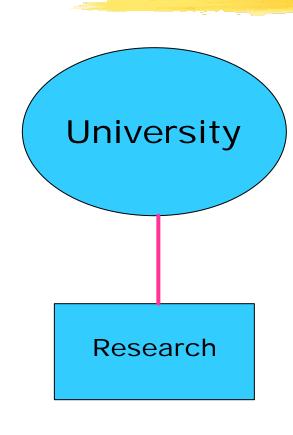
Analytical

- † Airflow: 2.0 2.2 cfm/ft²
- † Chilled Water: 65 90 ft²/ton
- † Energy Reduction:
 - † Lifecycle Cost Analysis

Kling

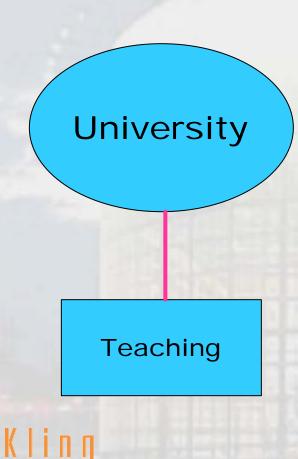
Energy Reduction Opportunities: Public Sector Analytical Labs

Public Sector


Analytical

- High Heat Gain (Design)
 - * Actual: Much Less
 - Variable Volume Airflow
 - Tracks Design v. Actual
- Return Air Non-Chem Labs
 - * Flexibility for Conversion

Who Builds Labs and Why? Universities **Public Sector** Corporate **Analytical** Teaching Research


- † Often Grant-Driven
- † Flexibility as Grants Change
- Nonlinear Funding Stream
- † Conversion to Teach Labs?

Kling

- † High Fume Hood Density
- † Double-Sided High Airflows
- † Acoustical Issues
- † Intermittent Occupancy:
 - † 2-Position Constant Volume
 - † Heat Recovery Not Likely
- † Maintenance Burden

Design Parameters: University Labs

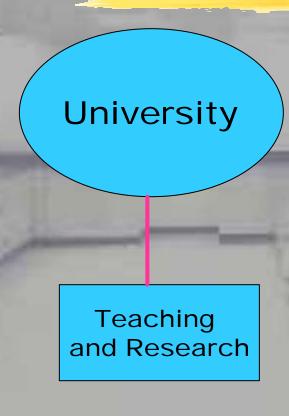
University

Teaching and Research

† Airflows:

† Research: 1.3 - 1.6 cfm/ft²

† Teaching: 2.5 - 6.0 cfm/ft²


* Chilled Water (Blended):

† 110 - 150 ft²/ton

† Low Fume Hood/Heat Gains

Energy Reduction Opportunities: University Labs

- Omit Humidification
 - Tradeoff Indoor Air Quality
- † Teaching Labs
 - Intermittent Occupancy
 - * 2-Position Constant Volume
 - † Justification of Alternatives
- * Research Labs
 - * Maintenance Constraint

Summary

- * Energy Reduction Opportunities Relate to:
 - Culture of Owner
 - * Economic Analysis/Hurdle Rate
 - *Receptive to Energy Issues
 - Occupancy Profile
 - † Lab Program
 - * Associated Flexibility
 - Density of Utilities